Весь спектр резинотехнической продукции

Мы ведем активную работу над модернизацией нашего сайта, чтобы сделать его более полезным для вас. Приносим извинения за возможные ошибки.

Конструкции резиновых манжетных уплотнений вращающихся валов

Надежность машин, механизмов и агрегатов таких отраслей современной техники, как авиация, космонавтика, судостроение, автомобилестроение, станкостроение, химическое и нефтяное машиностроение и других значительно зависит от безотказной работы уплотнений вращающихся валов. Любые отклонения от нормальной работы машины из-за отказа уплотнений приводят к большим потерям, снижению качества продукции, росту материальных затрат, угрозе здоровью обслуживающего персонала и чистоте окружающей среды. Надежность машин, механизмов и агрегатов таких отраслей современной техники, как авиация, космонавтика, судостроение, автомобилестроение, станкостроение, химическое и нефтяное машиностроение и других значительно зависит от безотказной работы уплотнений вращающихся валов. Любые отклонения от нормальной работы машины из-за отказа уплотнений приводят к большим потерям, снижению качества продукции, росту материальных затрат, угрозе здоровью обслуживающего персонала и чистоте окружающей среды.

В качестве уплотнительных устройств контактного типа для вращающихся валов широко применяют манжетные уплотнения (манжеты), изготавливаемые из резины и композиционных материалов на основе резиновых смесей.

От уплотнений других типов, манжеты отличаются высокой герметичностью, простотой конструкции, малыми габаритами и массой, относительно невысокой стоимостью, легкостью монтажа т.д.

Принцип действия радиальных манжет заключается в следующем: резиновый фигурный уплотняющий элемент (кольцо), охватывающий вращающийся вал, прижимается к поверхности вала с некоторым усилием, действующим в радиальном направлении. Для стабилизации величины этого усилия во времени на уплотняющий элемент, как правило, надевается металлическая браслетная пружина. С целью обеспечения герметичности и облегчения условий монтажа манжеты в посадочном месте она обычно армируются металлическим каркасом. При большом разнообразии конструктивного исполнения отличительной особенностью манжет является наличие у них хотя бы одной уплотнительной губы с контактной кромкой. Первоначальный контакт манжета с уплотняемыми поверхностями, обеспечивающий герметизацию при нулевом и малом давлении среды, осуществляется в результате пружинящего действия манжеты, деформированной (сжатой) при монтаже. Контактная плотность этого соединения повышается с увеличением давления среды, которая прижимает уплотнительную губу манжеты к уплотняемым поверхностям. На герметизирующую способность манжет существенно влияет радиальное усилие прижатия уплотнительной кромки манжеты к валу.

Незначительное радиальное усилие приводит к образованию более толстой смазывающей пленки и появлению утечек. Повышенные значения радиального усилия ухудшают условия смазки трущихся поверхностей, ужесточают температурный режим в зоне трения, ускоряют старение в износ эластомерных материалов уплотнения. С увеличением радиального усилия герметичность подвижного соединения повышается, достигая максимума, а затем вновь падает.

В общем случае радиальное усилие определяется тремя составляющими: усилием от деформации уплотняющего элемента манжеты (натягом манжеты); усилием от действия браслетной пружины и усилием от действия давления уплотняемой среды.

В процессе эксплуатации радиальное усилие уменьшается в результате релаксации, старения и износа материала уплотнения. Неточность изготовления и сборки уплотнительного узла приводит к неравномерному распределению радиального усилия в зоне контакта манжеты с валом и обычно характеризуется статическим и динамическим эксцентриситетом узла.

Статический эксцентриситет возникает от несовпадения оси внутреннего диаметра манжеты с осью зала и представляет собой геометрическую сумму эксцентриситета посадочного места под манжету относительно оси вала и эксцентриситета оси внутреннего диаметра относительно оси наружного диаметра манжеты. Причиной возникновения статического эксцентриситета является неточность изготовления уплотнительного узла и манжеты. Статический эксцентриситет приводит к неравномерному распределению радиального усилия по окружности, местному износу и утечкам.

При больших значениях статического эксцентриситета необходимо увеличивать радиальное усилие и уменьшать сопротивление изгибу средней части манжеты. На работу манжеты также влияет динамический эксцентриситет, равный половине биения вала. Способность манжеты удовлетворительно работать при наличии динамического эксцентриситета зависит от упругости и эластичности уплотняющего элемента. Динамический эксцентриситет приводит к неравномерному распределению напряжений усталостному разрушению материала и сокращению срока службы уплотнения.

При наличии дефектов на рабочей поверхности вала (забоин, вмятин, царапин, повреждений покрытий и др.) быстро разрушается уплотняющий элемент манжеты. Соприкасающиеся поверхности вала и манжеты должны образовывать антифрикционную пару, обладать коррозионной стойкостью к уплотняемой среде и стойкостью к износу.

Твердость вала выбирают с учетом скорости скольжения вала и запыленности окружающей среды. При наличии в уплотняемой среде абразивных частиц рекомендуют использовать валы с закаленной или цементированной поверхностью, а также применять защитные втулки вала. Манжеты изготавливают из различных эластомерных синтетических материалов, свойства которых ограничивают возможности работы манжетных уплотнений.

Так, в резиновых манжетах наблюдается ускоренное старение при высокой температуре и потеря высоко эластичности при низких а также механическое стеклование при большой частоте вращения. Отсюда следуют требования к ограничению температуры нагрева кромки и ее тщательному анализу, ограничения радиального биения валов и высокому качеству их обработки. Необходимо также анализировать возможности потери герметичности при низкой температуре и большой частоте вращения. Валы обычно изготавливают S3 термообработанной стали с твердостью HSG 30 при скорости скольжения в подвижном соединении менее 4 м/с и HSC 50 выше при скорости скольжения более 4 м/с. Применение для изготовления валов относительно мягких материалов (бронзы, латуни, титановых и алюминиевых сплавов и др.), допускается в специальных условиях эксплуатации. Квалитет допуска вала H10, корпуса Н9. В конструкции сопряженных деталей должны быть предусмотрены заходные фаски для устранения повреждений манжеты при сборке. Обычно уплотняющая кромка манжеты повреждается, если она при сборке проходит через шлицы, шпоночные пазы, резьбу и т.д., которые могут иметь заусенцы и острые кромки.

Поэтому сборку необходимо выполнять с помощью оправок. Перед установкой, в уплотняемом соединение, манжета должна быть очищена от загрязнения и смазана.

Манжету устанавливают так, чтобы скос ее уплотнительной губы был направлен в сторону герметизируемой среды. При таком положении манжеты к ее рабочей кромке обеспечен доступ уплотняемой среды, уменьшающий износ манжеты. Если уплотнение предназначено для защиты от проникновения пыли и грязи в герметизируемую полость (грязезащитные манжеты), то скос губы манжеты должен быть направлен в сторону окружающей среды. Основное требование, предъявляемое к манжетам — обеспечение необходимой герметичности в течение заданного срока эксплуатации. Нарушение герметичности при эксплуатации зависит от многих факторов: радиального усилия и геометрии эластичного элемента манжеты, скорости скольжения, температуры и давления среды, свойств уплотняемой среды и применяемого эластомера, обработки поверхности вала, статического и динамического эксцентриситета, монтажных дефектов и др.

От контактных уплотнений других типов из эластичных материалов манжеты отличаются наименьшими утечками, так как они обладают наилучшей «следящей» способностью, т.е. способностью «отслеживать» колебательные движения вращающихся валов, а также компенсировать неточности изготовления и сборки сопрягаемых деталей (несоооность, некруглоотъ и другие).

При применении манжет не требуется такая высокая чистота обработки контртела, как, например, при использовании механических торцовых уплотнений. На выбор манжет влияют следующие факторы: скорость вращения вала, герметизируемая среда, качество поверхности вала и системы смазки.

Высота микронеровностей на поверхности стальных деталей, сопряженных с уплотнением, должна быть 0,5-2 мкм. Такие микронеровности образуют своего рода «масляные» карманы из «уплотняемой среды, улучшающие условия смазки уплотнения.

По конструкции манжетные уплотнения вращающихся валов могут быть разделены на три типа:

  • неармированная манжета, закрепленная между деталями корпуса;
  • манжета, детали которой заключены в специальный металлический каркас;
  • манжета с привулканизованным армирующим кольцом.

По способу создания прижимающей силы (усилия) манжетные уплотнения подразделяются на три группы:

  • манжета, в которой радиальное усилие создается в результате деформации уплотняющего элемента;
  • манжета с кольцевой браслетной пружиной;
  • манжета с пластинчатой (лепестковой, пальчиковой) пружиной.

Такое деление манжет является условным, так как на практике имеются манжеты, содержащие признаки разных типов и групп. В последние годы, как у нас, так и за рубежом проводятся работы по совершенствованию конструкции, технологии изготовления и материалов манжет. Разработаны, запатентованы и выпускаются манжетные уплотнения вращающихся валов новых конструкций с улучшенными характеристиками.

Оригинал статьи: http://www.sputnik-rti.ru/

Наш сайт использует кукисы. Оставаясь на сайте, вы соглашаетесь c условиями.
Ок